SpamWall: Heuristic Filter for Web-Spam

Aasish K. Pappu, Animesh K. Trivedi
Indian Institute of Information Technology, Allahabad (U.P.), India
{akpappu_b03,aktrivedi_b03} @iiita.ac.in

Abstract— Although email spam has been a problem since
long time, we have recently witnessed tremendous growth in
Web spam, i.e., web pages containing useless contents. These
pages interfere with the algorithms that various search engines
adopt for indexing and ranking, and should be filtered out.
SpamWall analyses the content and structure of web pages
based on pre-defined heuristics, and classifies the pages as
spam or ham. Its architecture is based on the pipes-and-filters
architecture. SpamWall can be used by the search engines to
filter out pages that should not be indexed. SpamWall supports
manual training using pre-classified corpus. Our implementation
of the SpamWall system performed very well. Having trained
SpamWall sufficiently, we asked it to crawl the web and classify
the pages as it discovers. SpamWall classified about 92% of the
pages correctly. In this paper, we describe the detail design of
SpamWall.

Keywords: Web Spam, Information Retrieval, Content analysis,
HTML element analysis, spam filtering, Search Engines

I. INTRODUCTION

The Internet is growing rapidly. New websites are coming
up every day. There is no one to monitor the content of
all pages on the WWW, and therefore, many pages have
questionable quality. Assigning trust [8] to information on the
web has suddenly become a very important problem. In the
last decade, we have seen that search engines have become a
sine qua non to Internet users. People need to find information
on certain topics, and search engines are working very hard to
provide only relevant results. People desire that the first result
in the list should be the exact resource that they were looking
for. Clearly, a search engine needs to filter its web indices to
find nearest matches to search queries, and then present the
information in a palatable form to its users [10].

Commercial websites want the search engines to list their
pages at the top of relevant searches. Pages on such sites
are usually rich in advertisements and propaganda. Search
engine developers use these features to increase the page rank.
However, owners of some web sites are found to fool search
engines by faking up the features that search engines look
for. Thus, although the search engine thinks that a page is
important to the user, it has no content that the user might be
looking for. This is exactly what we mean by “web spam”.

Reports in 2002 have indicated that about six to eight
percent of the pages indexed by a search engine were spam,
while reports in 2003 and 2004 have specified this number to
be 15 to 18 percent. Another study has found that about 9%
of search results contain at least one spam link in the top-10
list, and 68% of all queries contain spam links in the top-200
list [3].

Users get annoyed when search engines navigate them onto
pages with no useful content. The search engine could have
been fooled because the structure and content of the malicious
website was appealing to the crawler’s algorithm. To assist the
search engine in lowering the ranks of spam pages, we can put
a SpamWall filter between the crawler and indexing. SpamWall
would get rid of most of the spam pages, thus improving the
performance of that search engine, and by satisfying the users.

In this paper, we first discuss previous work in this area that
motivated us. We would highlight shortcomings, if any, that the
work suffered from, and illustrate how SpamWall overcomes
them. We then briefly describe various techniques that web-
spammers generally use to fool search engines, and provide
information about how SpamWall tackles the same. In later
sections, we describe the framework of SpamWall, provide its
results, and finally conclude by mentioning the future scope
of the system.

II. THE PROBLEM

Identifying pages that are most relevant to the user based on
the search string is a critical problem. Search engines crawl
and index a huge number of web pages. Google had reported
to have indexed more than 8 billion textual documents by the
end of 2005. The number of pages is increasing very rapidly,
thereby posing problems to the page ranking algorithms. Since
page ranks are an important metric, a problem in evaluating
them puts forth significant challenges to robustness, flexibility,
and usefulness of the results of search engines.

Crawling and indexing is becoming increasingly difficult,
and hence, it is important to ensure that only useful pages
are actually indexed. Similar to techniques used in clustering
search results, we need to analyze the content and structure of
web pages to see if they should be indexed.

III. RELATED WORK

Henzinger et al. identified [13] web spam as one of the
most important challenges to web search engines. Manasse et
al. presented [7] techniques for detecting hyperlinks pointing
to spam web pages based on anomalies in statistical data of the
web crawls. A Broder et al. investigated [14] the structure of
the web graph. Mehran Sahami et al. examined the challenges
in web information retrieval [10] and discussed techniques
of placing additional invisible keywords on a web page and
suggested methods to tackle such spam by analyzing content
using Natural Language Processing and Machine Learning
Tools.

Zoltn et al. [3] has discussed about common and latest
spam techniques, also mentioned few detection techniques like
Statistical language for term spamming, analysis of link-count,
analysis of pageRank and collusion detection for link spam
farms and trust rank for other types of spam.

Minoru et al. [5] proposed a spam detection technique using
the text clustering based on vector space model for email
spams. Rajesh et al. proposed a new approach for textual
classification based on a method for scoring of documents
using the suffix tree for email spams. We are extending similar
approach that has been mentioned in [9] for content analysis
of web pages.

IV. SPAM TECHNIQUES

In this section, we briefly mention different techniques that
web-spammers use, in order to fool search engines into giving
high ranks to their pages.

A. Term Spamming

Textual content of a page is edited in order to manipulate the
link-structure around that document. For example, someone
might give a large number of hyperlinks to a certain commer-
cial website on his page.

B. Weaving

Spammers are found to duplicate parts of news articles and
online encyclopedia entries to insert large number of randomly
picked keywords on their page.

C. Phrase Stitching

Spammers may combine sentences and phrases from differ-
ent sources, usually by using RSS feeds, to create a web page
containing potential keywords in a search string.

D. Content Hiding

Spammers may place hidden content on a page by setting
the same color for text foreground and background. Although
this content will not be trivially accessible to human visitors,
search engines might consider it to be an important resource.

E. Cloaking

Spammer tries to detect the user agent accessing their
website, and based on whether a crawler is accessing it or a
human visitor is trying to obtain the page, it provides different
content.

F. Redirection

Crawlers usually do not follow HTTP Redirects via
JavaScript. So, pages that might be considered to be useful
by a search engines would immediately navigate onto useless
pages when some user tries to access it using JavaScript
enabled browser.

G. Intra-word Characters

The use of intra-word characters, which may be non-
alphanumeric. For example the word, “Viagra” can be written
as “Vi.agr.a”, while the word “medications” written as “med-
ica.tions”.

H. Non Alphanumeric Character Replacement

The use of non-alphanumeric characters instead of letters.
For example the word, “Viagra” can be written as “V|Qgr@”.

= .
- i

" Structure Analysis Content Analysis

Character 'Y
Replacement |

&

Database

i} Preprocesi's'e.d Text I
Analysis
X J
[o ‘</
‘\‘-:_ 5 h | [
Link Analysis]] ‘
m LP . i ~ .
) " "\ | Scoring i /h
Contextual Text and
(| _Analysis | B |£| Feedback ||\ m 4
A Y = o ' ¢
e . N
Fig. 1. Architecture of SpamWall

V. ARCHITECTURE

As stated earlier SpamWall has Pipe and Filter architecture.
SpamWall first analyzes the content of a web page, and then
analyzes the structure. The figure 1 depicts the architecture
of SpamWall. The structural analysis phase is given higher
preference, as most of the web-spam apply spam techniques
related to HTML tags. The structural analysis phase deals with
color, font and size of the text. The content analysis phase
constructs a suffix tree of the page and based on that system
does further analysis.

A. Structural Analysis

Structural analysis of a document uses its HTML DOM tree.
We extract this tree using a HTML parser.

1) Color Analysis: Whenever a webpage is found with a
text that has color almost similar to that of its background,
then it can be assumed to obscure text. This type of spamming
is very popular. We calculate the difference between the RGB
components of the foreground and background colors of a
text. If any of these three differences is below a threshold,
we increase the probability that the document is spam. Based
on a survey that we conducted in our labs to find out which
shades people can distinguish, we set this threshold to 150.
If difference between any RGB component of foreground to
background crosses threshold (150), then text is visible and

Human expert

system does not categorizes it as obscure text.

2) Text Size Analysis: Keywords in a document are
usually emphasized by increasing their font sizes relative to
the document text. Search engines give more weightage to
keywords found inside the title and heading tags. Spammers
write important keywords inside heading tags, but follow it
with useless content. To arrest such attempts, we use a natural
language processing module to evaluate the relevance of the
heading to the text that follows it. This analysis consumes
more time, so we carried out in parallel with other analyses.

3) Server-side and Client-side Script Analysis: Crawlers
find it difficult to emulate a browser as a user agent, when
a complicated JavaScript has been used in the document.
SpamWall uses a JavaScript evaluator that could generate an
equivalent webpage that would appear if the page was accessed
in a browser. Although there is a large number of client
side scripting languages, SpamWall currently supports only
JavaScript.

A server side script that redirects a browser from one page
to other can be easily tackled. For every webpage visited by
crawler, SpamWall tries to emulate the redirection by using
“curl”. If a page has a redirecting script then that would fetch
the actual page and avoid the cloaking problem discussed
earlier.

There is always a high chance of putting the crawler into
an infinite loop of redirections. To avoid such an accident
SpamWall maintains a policy for redirection. The policy
states that for every redirection we have maintained a log to
differentiate between normal link crawling and redirection.
For each consecutive redirection of the page the redirection
counter is incremented, if the counter crosses the threshold
value, that particular crawling thread is blocked, assuming
to be the web-page to be a potential spam. The redirection
counter threshold is taken as 4 (based on observation).

4) Link Analysis: Linkfarms being the famous spam
technique that involving the HTML links and many solutions
have been already proposed for the same. We would give
more emphasis on the doorway pages. These pages usually
contain less content and more links, which would easily
annoy the web-page visitor. Although, when a web site uses
frames kind of structure, may leave a page with links only
(without any content). This issue can be handled easily, by
verifying whether that particular page contains any frame tag.
If it contains any such tag, then the page is permissible to be
a ham otherwise it has high chances to be a spam.

5) Contextual text analysis: Sometimes a particular URL
may contain a relevant conten that has been indexed by the
Search Engine, but due to some reasons, the webpage under
that URL might have changed to an irrelevant page. It is also
possible that the content of the page depends on the User
Agent information in the HTTP request. This technique of
poisoning search engine indices can be handled by faking the

User Agent during crawling phase, without breaking the Robot
Exclusion Principle.

B. Content Analysis

If a document passes all the structural spam-tests, its
content is analyzed to measure relevance. Three steps of
content analysis are required before a document could be
classified as spam or ham.

1) Character Replacement: Textual spam is usually written
in non-alphabet characters that obfuscate the spam features,
for which our filter is trained for. This issue can be tackled
by performing the character replacement procedure based on
the pattern matching. The initial procedure of this phase
is identifying the non-alphabet character that occurs in the
middle of a proper word i.e. a word formed with only alpha-
numeric characters. The modification or replacement of that
non-alpha character takes place, based on the knowledge base
that has been populated with rules during training. A simple
example would be concluding whether the @ character has
been used in the context of an email address or used as
replacement for the character a. The rule corresponding to
such a replacement is as follows:-

if word.Pattern = “[\\w=\\.]1{1, }\\@([\\da-zA
=Z=1{1, 1\\.) {1, } [\\da-zA-Z2-1{2,4}\$

email
alpha

then word.Context =
else word.Context =

The above mentioned regular expression is for identifying
an email address. Similarly, every letter has a set of corre-
sponding non-alpha representation that can be written in a
text. We have considered two levels of replacement of the text

Instant: An instant replacement would substitute ascii char-
acters like ‘A, A, A, A with A.

Verification: Some characters like @ needs a verfication(the
example discussed above) whether to be replaced by character
a or not. There are few more characters that follows same
principle, characters like $ can be replaced S.

Group Some need to be considered as a group of characters
that look like a alpha character. For example | — | can be
replaced by H,

[\/]

replaced by M, | < is substituted by K etc.

This kind of representation of alphabets in the form
of non-alpha characters has been thoroughly observed by
human experts in many spam pages usually sites carrying
pornographic or software cracks and serial keys web sites.
Although, the population of the knowledge base is currently
done manually, an adaptive learning procedure can be applied
to train the system with pattern matching of particular
character or group of characters with alphabets.

2) Preprocessed Text Analysis: This is the most important
step in content analysis. This phase basically consists of suffix
tree construction of the document as discussed in [9]. Firstly,
the suffix trees have been constructed over the corpus of web-
pages. The corpus has been developed by authors themselves
in an unbiased manner, due to the non-availability of corpus
for web pages unlike email corpora.

The documents are classified into two classes namely, ham
and spam. Class tree is developed for each class (ham and
spam). We have two suffix trees over which we have to match
new webpage which we want to mark spam or ham. For every
page first we convert it into a long sequence of string after
the initial preprocessing. In our algorithm, stop words are
not removed but given minimum weightage. Notation used
in subsequent sections are

T is suffix tree

s is string under consideration

m is match (m is prefix of s or may be complete s)

m consists of mqg, m1, ma, ms3, ma, Mms, Mg

(m; is simply ith alphabet matched)

3) Scoring a Match: A string is said to have match if
there exists a path in constructed suffix from root node to any
prefix of that string. During the construction of suffix tree
we had already distributed probablities to diffrent nodes. So,
now for match m we ahve to assign score to that match by
giving weightage to each alphabet matched as:-

m = match(s,T) means we have match of some prefix
string of s in tree T’
m = momimemsmy where each m; represent a alphabet

score(m) = v(m|T) Y1, ¢lp(m;)]

The function ¢ is used as a significance function. We had
used following while constructing tree for ham and spam
classes.

P linear
olp] = ¢ p* square
\/ﬁ root

These three functions are most popular significance func-
tions in machine learning. In ham matching we had used
sub-linear significance function, on the other hand, in spam
matching we had used super-linear significance function. We
have chosen such a distribution because we want to give more
weightage to spam matching rather than ham matching.

s1g(0.5) = 0.25 for ham while using sublinear function

sig(0.5) = 0.71 for spam while using superlinear function

Although, we have given more weightage to the spam
matching, but problem with this approach tends to gives rise
to more false positives.

After finding out a match and adding up all significant
probability distribution over the tree, now we will consider
significance of match m or specifically significance of match
of string length L. It might be the case that tree at that depth
contains many strings of length L, and hence more the number
of strings at that level with same string length less the number
of significance of the match. So we had used next level of
significance distribution as match significance of string.

1 match unnormalized
v(m|T) = % match normalized
i€ (mx=|T
% match length normalized
ie(m/|T) It

4) Scoring a Document: Scoring of document is two phase
process. First generate different strings that have to match
with tree and then second score the mach which we had
already described in previous section. Documents should be
scored by match of all its suffixes as explained in [9] hence
finally score of document is as below:-

SCORE(s,T) = 2score(s().1)
Finally tree level normalization we had done as to hide dif-

ferences between size and structure of suffix tree for different
classes.

1 unnormalized
size(T) match normalized

o(m|T) = density(T) density normalized
logTotal Freq(T) log total frequency normalized
avFreq(T) average frequency normalized
avFirstLevel Freq(T) average first level frequency

After that when score is found we define certain threshold
to mark it as ham or spam The document is matched with
both of the class trees. The score that has been brought to this
phase from structure analysis phase, by the document is added
to these new scores. The element phase scoring is explained
in the next section.

C. Scoring and Feedback System

The scoring system assigns and maintains the score of a
particular document at each level of filtering. The qualification
or disqualification of a document at particular level is assigned
a specific score for being potential spam or ham. Each level
of filtering has been assigned a weightage for assigning the
score of a document. Each filter has an associated weight that
contributes to the level score of a document.

SCOTEpegt = SCOTEcyrrent + SCOT€Eleyel X weightlevel
The score of a document is carried forward to the next

level, after the document passes through the content analysis.
The final score of the document is calculated and the

spam:ham Ratio spam Recall spam Precision

1:1 87.00% 92.48%
4:6 89.71% 91.75%
1:5 85.22% 86.07%
1:1 92.15% 92.12%
4:6 92.25% 84.76%
1:5 93.9% 91.89%
1:1 89.09% 92.00%
4:6 94.22% 89.50%
1:5 85.14% 90.10%
Fig. 2. Recall and Precision results against the reciprocal of hsr(ham to

spam ratio)

possibility of spam and ham is calculated as below:-

hamScore = score tinql + SCOT€Ram
spamScore = SCOTe finql + SCOT€spam

The calculation of scorepq, and scoregpq, has been
discussed in the previous section.

hsr = hamScore/spamScore

if hsr is greater than set threshold value, then the document
is considered to be potential ham, weak spam and vice-versa.

VI. RESULTS

As an experimental setup, Web-Sphinx library has been used
as a crawler that was developed by Carnegie Mellon University
(CMU). Web-Sphinx is supplied with a set of seeded URLs
to fetch the documents to the local drive. The testing process
is carried out over those documents. Figure 2 shows the spam
precision and recall against the hsr. Documents have been
parsed with HTML parser to separate the content and DOM
tree structure. Previously, SpamWall has been trained with the
corpus that has been created by the authors themselves. Few

example documents of the corpus are given below
Example 1: document with non-alphabetic characters

<html>

<body bgcolor='‘lightgray’’>
</table>

<spam content>

h! i am \/|@gr@ pOr!\!
asdf@spam.com
123abc456spammer98098 XXX9097277
α α \Sι

Example 2: Invisible text example

<html>

<body bgcolor="'‘'#421D1D’’>

This is a standard invisible text

</body>

</html>

Example3: document using server-side script redirection

<?php
header (' Location:spampage.php’) ;

7>

Example 4: document using js redirection

—

<script language=‘'‘javascript’’><!--
location.replace (' ‘target.html’ ")
--></script>

The sample documents given as input to the SpamWall
are converted to the following document after preprocessing
(inspite of losing the hamscore to spamscore).

Example 1 after Character-Replacement Phase

<html>

<body bgcolor="'‘lightgray’’>
</table>

<spam content>

hi i1 am viagra porn
asdf@spam.com

abc spammer.

aast;

In the above modified document the text has been re-
written by the Character-replacement phase according to the
Knowledge Base that has been provided. A keen observation
says that in the above modified text, the character @ has not
been changed when the context is email whereas it has been
modified when the context was alphabet. Number string as
that carries no weightage for the spam detection has been
eliminated. The elimination has been done based on the
heuristics that has been assumed. On regular observation of
web pages, it has been assumed that a number of length more
than 3(threshold assumed) would not carry special weightage
in that particular alpha numeric token.

In the Example 2, the individual differences of R, G, B
components of font color and background fails to cross the
threshold limit 150(discussed in architecture section).

In Example 3, the redirection is detected by the SpamWall.

VII. OUR CONTRIBUTION

We have proposed tool named SpamWall for detecting
and eliminating web spam. Here we have adopted a novel
approach for detecting spam pages based on structure and
content analysis. Although most of the spam techniques we
have dealt are quite common and popular, we maintain that
the solutions provided would produce promising results. In the
content analysis, no regular preprocessing or stemming of the
document is required, as the SpamWall does not neglect the
stop words, but only gives lesser weightage. The invisible text
technique is handled quite carefully with the help of proposed
mathematical formula. Text size has also been considered. A
crude JavaScript evaluation is one of the potential solutions
given.

VIII. CONCLUSION AND FUTURE SCOPE

We assert that SpamWall would be a good contribution
in the realm of content classification. Adding to the major

works that have been done already, SpamWall tries to excel
the shortcomings of the previous works. More improvizations
need to be done to SpamWall for better classification of web
pages. The spam techniques and the solutions discussed in
this paper are quite limited. There are many other unexplored
spam techniques that would be standing tall in the future.
We would like to make the system more robust, adaptive and
learning. The current procedure of suffix tree construction of
a document is memory intensive. It took nearly 6 hours for
processing 1000 average sized documents. Optimization of
suffix tree construction has been proposed by Sandeep et al
[12] and can be incorporated into SpamWall.

REFERENCES

[1] Pokorny, J.: “Web Searching and Information Retrieval”. Computing in
Science Engineering, 2004, Volume 6, pp. 43-48.

[2] Shari Lawrence Pfleeger, Gabrielle Bloom, “Canning spam: Proposed
Solutions to Unwanted Email,” IEEE Security and Privacy, vol. 03, no.
2, pp. 40-47, Mar/Apr, 2005.

[3] Zoltn Gyngyi, Hector Garcia-Molina, “spam: It’s Not Just for Inboxes
Anymore”, Computer, vol. 38, no. 10, pp. 28-34, Oct., 2005.

[4] Guido Schryen, “A Formal Approach towards Assessing the Effectiveness
of Anti-spam Procedures”, Proceedings of the 39th Annual Hawaii
International Conference on System Sciences - Volume 06 January 04
- 07, 2006.

[5] Minoru Sasaki, Hiroyuki Shinnou, “spam Detection Using Text Cluster-
ing”, cw, pp. 316-319, 2005 International Conference on Cyberworlds
(CW’05), 2005.

[6] K. Albrecht, R. Wattenhofer, “The TROOTH Recommendation System”,
pp. 110- 110,Proceedings of the Advanced International Conference on
Telecommunications and International Conference on Internet and Web
Applications and Services (AICT/ICIW 2006).

[7] D. Fetterly, M. Manasse, and M. Najork. “spam, damn spam, and statistics
— Using statistical analysis to locate spam web pages”. In Proceedings
of the 7th International Workshop on the Web and Databases (WebDB),
Paris, France, 2004.

[8] Mirena S. Chausheva, “Calculating web page trustworthiness by exploring
communities on the web”. In Journal of Computing Sciences in Colleges
archive Volume 19 ,Issue 5 (May 2004) Pages: 314 — 315.

[9] Rajesh M. Pampapathi, Boris Mirkin, Mark Levene, “A Suffix
Tree Approach to Text Categorisation Applied to spam Filtering”,
arXiv:cs.AlI/0503030 v1 14 Mar 2005

[10] Mehran Sahami, Vibhu Mittal, Shumeet Baluja, and Henry Rowley.
“The happy searcher: Challenges in web information retrieval”. In Trends
in Artificial Intelligence, 8th Pacific Rim International Conference on
Artificial Intelligence (PRICAI), 2004.

[11] S. Chakrabarti, M. Joshi, V. Tawde, “Enhanced Topic Distillation Using
Text, Markup, Tags and Hyperlinks”, SIGIR Conf., 2001.

[12] Sandeep Tata, Richard A. Hankins, Jignesh M. Patel, “Practical Suffix
Tree Construction” In Proceedings of the 30th International Conference
on Very Large Databases, Publisher: Springer Berlin / Heidelberg, Pages:
281-299, September 2005.

[13] M. Henzinger, R. Motwani, C. Silverstein. “Challenges in Web Search
Engines”. SIGIR Forum 36(2), 2002.

[14] A. Broder, M. Najork and J. Wiener. “Efficient URL Caching for World
Wide Web Crawling”. In 12th International World Wide Web Conference,
May 2003.

