
Hybrid Approach for Parallelization of Sequential
Code with Function level and Block level

Parallelization
K.Ashwin Kumar, Aasish Kumar Pappu, K. Sarath Kumar and Sudip Sanyal

{kakumar b03,akpappu b03,kskumar b03,ssanyal}@iiita.ac.in

Abstract— Automatic parallelization of a sequential code is
about finding parallel segments in the code and executing these
segments parallely by sending them to different computers in a
grid. Basically, parallel segments in the code can be found by
doing block level analysis, instruction level analysis or function
level analysis. Block is any continuous part of the code that
performs a particular task. This paper talks about a hybrid
approach that combines the block level analysis with functional
level analysis for parallelization of sequential code and its illus-
trates its advantages over block level parallelization and function
level parallelization performed independently. In this approach,
segments of code are identified as basic blocks. These blocks
are analyzed to identify them as parallelizable or dependent.
Loops which are also identified as blocks are parallelized using
existing loop parallelization techniques [1]. This information
would be used for automatic parallel processing of the set of
independent blocks on different nodes in the grid using Message
Passing Interface(MPI). The system will annotate the MPI library
functions to the program at appropriate positions in the source
code to proceed with the automatic parallelization and execution
of the program.
Keywords: Block level parallelization, Instruction level paralleliza-
tion, Function level parallelization, Loop level parallelization,
Automatic parallelization

I. INTRODUCTION

Today a large number of techniques have been developed to
convert sequential code into parallelized code. Some of them
are Block level parallelization [2] in which blocks [3] are
analyzed, or Instruction level parallelization in which instruc-
tions in the code are analyzed. The current paper has dealt
with a new technique of combining block level parallelization
and function level parallelization to build up on the existing
techniques in automatic parallelization [4] of sequential code.

II. RELATED WORK

Department of Mathematics and Computer Science, South
Dakota School of Mines and Technology has worked on a
project that focuses on parallelization of C code. Their work
mainly concentrates on block level parallelization and does not
take care of function level parallelization. Another approach
called Cilk devleoped at MIT Laboratory for Computer Sci-
ence in which programmer has to specify the procedures in the
C code that have to be parallelized by inserting keywords in the
source code. The Cilk runtime system takes the responsibility
for scheduling them efficiently.

G.S.Tjaden and M.J.Flynn proposed the approach for detec-
tion and execution of parallel instructions [5]. A study made by
David W. Wall from Digital Equipment Corporation, Western
Research Laboratory showed the various limits of instruction-
level parallelization [6].

The three basic techniques of parallelization, Instruction
level parallelization, Block level parallelization and Function
level parallelization suffer from these drawbacks:

• In Instruction level parallelization, there may be very high
communication overheads or the overhead of creating
threads.

• In Function level parallelization, the performance may not
be satisfactory. For example suppose that two function
calls are made inside another function and that both of
them can be parallelized. Also suppose that one of the
functions has one or more loops which are responsible for
total complexity of the program. Therefore parallelization
of the functions would not significantly speed up the
code.

• The performance of block level parallelization is better
than the previous two. However, if there are more than
one function calls in a block and if these functions are
responsible for the total complexity of the code then
running such blocks in parallel may not yield good
results.

We are interested in patching up some of the loop holes
in the above techniques by combining both block level and
function level parallelization. This approach was found to be
better as the problems in function level parallelization and
block level parallelization are nearly solved by considering
function call as a part of block. Care is taken to ensure that
there is only one function call in every block. Function level
and block level analysis is done on these blocks and they are
parallelized.

III. SYSTEM ARCHITECTURE

The system is built as a Pipe-and-Filter architecture. Archi-
tecture consists of eight phases as shown in the Fig 1

A. Preprocessing

This stage eliminates all the comments in the input source
code. This helps in efficient and uninterrupted processing of

Fig. 1. System Architecture

the source code in the later phases.

B. Identification of blocks

This phase identifies blocks in the source code. We identify
every block by the position of its beginning and end markers
in the source code. Block identification is carried out for each
function in the source code. A block in turn may contain one
or more blocks. The block identification procedure is effective
and perfect and avoids block conflicts. A block conflict is said
to occur if blocks overlap. Identification of blocks is based on
keywords in the source code which are responsible for the
control flow in the code [3]. These keywords are recognized
based on regular expression matching. We call these regular
expressions as patterns. Patterns are the regular expressions
that are used for identifying a particular order of occurrence
of tokens in the source code.
Example :

[\t]*while[a-z0-9A-Z=<>+/*++--_.&&
\t]+[\t]*

is a pattern that recognizes a while statement.

1) Sequence of steps:

• Define patterns for recognizing the keywords occurring
in a line in the source code.

• Look for matching patterns in the source code and for
every occurrence of keywords, decide the boundaries of
the block containing that keyword. There on, note down
start and end line numbers of the particular block. This
point is made clear in below Fig.2 and Fig.3

1. void main() {
2. for(j=0;j<i;j++)
3. {
4. int j=1, t=1, l=1, w=0, r;
5. for(y=0;y<2;y++)
6. {
7. t++;
8. }
9. q=1;

10. }
11. for(k=0;k<3;k++)
12. {
13. int l=-1; w=0;
14. w++;
15. }
16. for(m=0;m<3;m++)
17. {
18. int r=1;
19. }
20. while(o<1)
21. {
22. p=1;
23. }
24. getInch();
25. getSource();
26. }

Fig. 2. Example code

block0 1− 26
block1 2− 10
block2 4− 4
block3 5− 8
block4 7− 7
block5 9− 9
block6 11− 15
block7 13− 14
block8 16− 19
block9 18− 18

block10 20− 23
block11 22− 22
block12 24− 24
block13 25− 25

Fig. 3. Block sequencing Example in Figure 2

A block is simply a set of statements having single entry
and single exit points. This set of statements may consists
of compound statements, user-defined functions or a single
expression. In this system, set of statements or a statement is
identified as a block if it contains any of the following tokens:

• while
• for
• if
• else
• {
• }
• userDefFunc()
Since keywords are identified by regular expressions, we

can add more keywords by increasing the number of regular
expressions.

Basically, the core complexity of a program lies in a block of
compound statements like a for loop. Therefore, parallelization
of the source code must be at the block level. So block level
parallelization can be accomplished in this phase.

C. Variable Scope Analysis

In this phase, each block is parsed to extract the variables
in that block. A variable can be an identifier and also an user-
defined function call. There are 4 types of flags alloted to each
variable. Those are LIVE, DEAD, READ and WRITE. While
extracting variables, each statement in the block is analyzed for
assigning appropriate values to the four flags corresponding to
a variable. A flag is a status bit appended with each variable
occurred in a block. The flags are explained below.

LIVE: This flag value tells whether a variable is
defined inside a block or not. If the value of flag
is ‘1’, then the variable is defined in this block. If ‘-
1’ is assigned to this flag, then the variable is defined
outside the block.
DEAD: This flag suggests whether a variable will
be killed after a block exit or not. If the value of
flag is ‘1’, then the variable is dead after this block,
otherwise the variable is live even after the block.
READ: This flag suggests whether a variable is read
in a particular block or not. If the value of flag is
‘1’, then the variable is read in a block, otherwise
the variable is not read in a block.
WRITE: This flag suggests whether a variable has
been modified in a particular block or not. If the
value of flag is ‘1’, then the variable is modified in
a block, otherwise the variable is passed unchanged
in a block.

These variables are stored in a list, that is annexed to a block
object.

This phase interacts with the block identification module
to know start and end line numbers of a block. The output
of this phase would be annotated block information for the
further block level analysis in later phases. Block level variable
analysis makes the scope finding procedure quick and efficient.

1) Sequence of steps:

• Each line in the block is tokenized and it is verified
whether each token is an identifier or not. If it is an
identifier, it is added to the list.

• If an expression is encountered, the variables are checked
for their status i.e. READ or WRITE. On identifying the
status of the variable its flags are updated, as shown in
the Fig.4.

• An array e.g., a[] is a sequence of variables. Each element
in an array is to be considered as a distinct variable and
it is accessed using index or iterator of an array. If a[i]
is a variable, then it may hold different numeric values
at a given time. Therefore, the array variable refers to a
distinct array element i.e. a distinct variable. Thus, it is
necessary to track the value of index variable. This can

be done using watch1 procedure. There on, the value of
the index variable is fetched and the corresponding array
element is accessed, then its scope information can be
found and stored. suppose a[i] in 1st block and a[j] in
second block. For a[i] in 1st block and a[j] in 2nd block
to be independent of each other, intersection of set of
values that j takes for which a[j] was accessed and set of
values i took for which a[i] was written must be a null
set.

• These steps are repeated until the block end has occurred.

for(i=0;i<6;i++)
{

int a;
a = a*i;

}

Fig. 4. Example code snippet

VAR L D R W
i -1 0 1 0
a 1 1 1 1
j -1 0 1 1

Fig. 5. Variable scope information for above example code

This phase is independent of a block structure, it just
depends on the start and end line numbers. This provides
flexibility in finding the scope information for any portion of
code.

The necessary and sufficient information required for the
dependency analysis phase is provided by this phase.

D. Construction of Abstract Syntax Tree
Abstract syntax tree represents each function in the source

code as a tree. The nodes are blocks and function definition
being the root of the tree. This is logical representation of a
function. The tree is built in such a manner that the code can
be easily recontsructed in the last phase using this information.
A node is a data structure which contains block information
such as start and end line numbers, variable scope information,
address of parent block and number of children it has. A parent
block can be understood as a nesting block.

This phase takes list of blocks from block identification
phase and passes logical representation of each function to
the next phase.

Since the number of blocks is already known, the process
of tree construction can be carried out in O(n2). Each node
stores number of children to avoid back tracking for tree
traversal. Algorithm for building the tree is shown as follows
The example shown in Fig. 7 shows the creation of tree
representation of a given code snippet in Fig. 6.

This logical representation of the function would be useful
during the reconstruction or restructuring of the code.

E. Dependency Finder
The information provided by the Abstract Syntax Tree phase

is a hierarchy of blocks, tree structure. A tree has levels and
the considerable information from this tree would be blocks at
the same level, as a input to this phase. At a time two sibling
blocks are considered and dependency is found between them.
A statement X depends on a statement Y if

1watch is a runtime procedure to track value of variables

Algorithm 1 Building Tree representation of code
1: NSF ⇐ No. of Scannable Functions
2: numchild ⇐ 0
3: index ⇐ 0
4: parent ⇐ -1
5: level ⇐ 0
6: block ⇐ blocksIdenti-

fier(function.startLineNo,function.endLineNo)
7: NB ⇐ number of blocks in sequence
8: child0 ⇐ new Node(block0.startLineNo,

block0.endLineNo, numchild, index, parent, level)
9: root ⇐ child0

10: index ⇐ 0
11: parent ⇐ 0
12: level ⇐ level+1
13: child1 ⇐ new Node(block1.startLineNo,

block1.endLineNo, numchild, index,parent,level)
14: child0.numchild ⇐ 1
15: for j = 2 to NB do
16: for k = j − 1 to 0 do
17: condition1 ⇐ blockj .startLineNo >

blockk.startLineNo
18: condition2 ⇐ blockj .endLineNo <

blockk.endLineNo
19: if condition1 and condition2 then
20: numchild ⇐ blockj .numchild
21: index ⇐ j
22: parent ⇐ k
23: level ⇐ level+1
24: blockj ⇐ new Node(blockj .startLineNo,

blockj .endLineNo, numchild, index, parent,
level)
break

25: end if
26: end for
27: end for

• X can be executed after Y in a run of the program
• both X and Y read or write a common memory location

1. func()
2. {
3. if(i>2)
4. {
5. i=i+4;
6. }
7. while(i>0&&i<2)
8. {
9. j++;

10. i--;
11. }
12. }

Fig. 6. Example code snippet

1-12
|
|->3-6
| |
| |->5-5
|
|->7-11
| |
| |->9-10

Fig. 7. Tree representation for above example code in Fig. 6.

Based on variable scope information of both the blocks taken
at a time, dependency is found. Result is stored for each pair
of blocks. Dependency finding stage is carried out in two
intermediate stages.They are

1) Function Dependency Finder
2) Block Dependency Finder

Let us understand each of them individually
• Function Dependency Finder: In this sub-phase both of

the blocks are checked whether they contain any user
defined function call or not. If any one of them contains
a function call, then that particular function’s arguments
and return variables are matched, with the variables in
the second block and vice versa. To accomplish this
verification procedure a table is maintained, that tracks
the variables status i.e., READ and WRITE in each
expression in the other block (block other than that which
contains a function call). This table will suggest whether
return value of the function call is used by the other
block and also whether any variable in the other block
are passed as arguments in the function call.
After the above analysis, global variable analysis is done.
The precondition for global variable analysis is both the
blocks must contain different user-defined function calls.
During this analysis, each function definition is scanned
for any common access of global variables. If it is found
that they access or modify any of the global variables in
the program, then blocks containing these function calls
are considered to be dependent.
To understand Function Dependency Analysis, consider
a function application f(e1, ..., en). Since the language

is function, the arguments e1, ..., en do not depend on
each other. Thus, dependence analysis is trivial in a
function language. We know that these expressions are
independent. We also know that the function call “f(...)”
does depend on the arguments to the call.
The standard way of representing functional programs
for parallel execution is as dataflow graphs. The graphs
show dependences between expressions in the form of
what functions use what values. Each node of the graph
denotes a function; edges connect the results of a function
to where they are used. For example, the functional
expression (z + 2, x ∗ y) would have the graph as shown
in Fig.8

z--|
+--|

2--| |
|-->pair

x--| |

*--|
y--|

Fig. 8. Data flow graph for above functional expression

• Block Dependency Finder: If dependency status of the
pair of blocks taken is pending, then those blocks are
passed on to this phase. In this phase common variables
occurring in each block are matched. The status flags are
compared.

This phase interacts with abstract syntax tree phase to
take pair of blocks as inputs. Output of this phase would be
dependency status of a pair of blocks. Algorithm used is shown
in Algorithm2

To give brief idea of functionality of this phase, in Fig.4 the
blocks from 3 to 6 and 7 to 11 are dependent because they
access and modify a common variable whose scope is visible
to both the blocks. If flag sequence of a common variable in
both the blocks is found in one of the following sequences,
then the blocks are dependent on each other.

LIVE=1, DEAD=0, READ=1 and WRITE=0
LIVE=-1, DEAD=0, READ=1 and WRITE=0
LIVE=1, DEAD=0, READ=0 and WRITE=0
LIVE=-1, DEAD=0, READ=0 and WRITE=0
LIVE=-1, DEAD=1, READ=0 and WRITE=0
LIVE=1, DEAD=1, READ=0 and WRITE=0

F. Dependency Analysis
Dependency analysis phase takes input, pair of blocks from

the list of blocks provided by the Abstract syntax tree phase
and tests the dependency between the two blocks.

This phase accomplishes the task of finding maximum
number of blocks that can be run in parallel, establishing tran-
sitive relations between the blocks. Two blocks are transitively
related, if a block A is independent on block B and block B
is independent on block C, then dependency between block A
and block C is found. On finding out, this relationship between
all the blocks in the source code, all the transitively related
and directly related blocks are combined together, which can
be considered as partition of a set of blocks. A partition of
a set X is a set of nonempty subsets of X such that every
element x in X is in exactly one of these subsets.The idea

Algorithm 2 dependencyFind():Finding dependency between
blocki and blockj (i<j)

1: flag ⇐ 0
2: if blocki and blockj contain function calls and both are

dependent then
blocki and blockj are dependent

3: else
4: novi ⇐no of variables in blocki

5: novj ⇐no of variables in blockj

6: for i1 = 0 to novi do
7: for i2 = 0 to novj do
8: if blockj .variablesi1==blocki.variablei2 then
9: if blocki.flagi2−0==1 and blocki.flagi2−1==0

and blocki.flagi2−2==1 and
blocki.flagi2−3==0 then

10: flag ⇐ 0
11: end if
12: if blocki.flagi2−0==-1 and blocki.flagi2−1==0

and blocki.flagi2−2==1 and
blocki.flagi2−3==0 then

13: flag ⇐ 0
14: end if
15: if blocki.flagi2−0==1 and blocki.flagi2−1==0

and blocki.flagi2−2==0 and
blocki.flagi2−3==0 then

16: flag ⇐ 0
17: end if
18: if blocki.flagi2−0==-1 and blocki.flagi2−1==0

and blocki.flagi2−2==0 and
blocki.flagi2−3==0 then

19: flag ⇐ 0
20: end if
21: if blocki.flagi2−0==-1 and blocki.flagi2−1==1

and blocki.flagi2−2==0 and
blocki.flagi2−3==0 then

22: flag ⇐ 0
23: end if
24: if blocki.flagi2−0==1 and blocki.flagi2−1==1

and blocki.flagi2−2==0 and
blocki.flagi2−3==0 then

25: flag ⇐ 0
26: else
27: flag ⇐ 1
28: end if
29: else
30: if flag==1 then

break
31: end if

flag ⇐ 0
32: end if
33: end if
34: end for
35: end for
36: if all variables of blockj satisfy above rules then
37: print ‘blocki and blockj are independent’
38: end if

Fig. 9. Degree of parallelization for three above mentioned techniques

behind a partition of a set is, all the blocks in that partition
would run in parallel independently. On the other hand, each
partition runs sequentially.Important thing to note is to take
care of Block control mechanism For example, consider three
partitions of a set {A,B,C, D, E, F,G, H} are P1 = {A,B},
P2 = {E,F,C}, P3 = {D,G, H}. Now P2 runs after the
execution of P1, similarly P3 executes after the execution of
P2. Whereas, in P1 both A and B execute concurrently, in P2
E, F and C execute concurrently and in P3 D, G and H execute
concurrently.

Assume that total program takes 1 sec. When all the blocks
are run sequentially, then execution time of P1, P2 and P3
would be 30%, 35% and 35% respectively. When the blocks
in each of the partitions are executed concurrently, then the
execution time of P1, P2 and P3 would be 15%, 11.67% and
11.67% respectively. This shows that the total execution takes
only 38.4% of the original time.

G. Result Organization and Code Reconstruction with MPI
standard

The MPI library calls are appended at those portions of the
source code, where the program can be parallelized. These
portions are identified from the output file.

IV. RESULT

We tried and tested this Algorithm for parallelization of
sequential code using block level and function level paral-
lelization by giving input programs with increasing number of
blocks and function calls. Its result is compared to the one
tested with block level parallelization algorithm alone and to
the one tested with function level parallelization algorithm

alone. It has been observed that the earlier is much more
efficient when compared to the other two. The figure 9 show
the results Graph-1 shows the degree of parallelization when
function level parallelization is carried out. Graph-2 shows
the degree of parallelization when block level parallelization
is carried out and result is better than that of function level par-
allelization. Graph-3 shows the degree of parallelization when
block level parallelization with function level parallelization
is carried out and degree of parallelization is observed to be
nearly double. Hence the approach was certainly found to be
more effective.

V. FUTURE PERSPECTIVE

Future scope would be to implement loop level paralleliza-
tiont [11] and instruction level parallelization [9], to perform
better. The loop level method parallelizes low-level loops in
the code that are responsible for most of the computational
cost. There are no restrictions when running with this method.
However, the speedup factor may be significantly less than
what can be achieved with domain level parallelization. The
speedup factor will vary depending on the features included
in the analysis since not all features utilize parallel loops.
The idea given in the paper [12] of dealing with pointers
and dynamic variables in Automatic parallelization will be
extended to C. The idea will be extended to handle pointers
in the C code. Power of instruction level parallelization will
also be used to enhance the usability of the algorithm.

REFERENCES

[1] Alian Darte, Yves Robert, Frederic Vivien Loop Level Parallelization
Algorithms LIP, Ecole Normale Superieure de Lyon, F 69394 LYON
Cedex 07, France

[2] Gregg Stubbendieck, Pete Gasper, Caleb Herbst, Jeff McGough, Chris
Rickett Automatic Parallelization of Sequencial C Code Department of
Mathematics and Computer Science, South Dakota School of Mines and
Technology peter.gasper@gold.sdsmt.edu

[3] Muchnick,S. S. (1997). Advanced Compiler Design & Implementation.
San Francisco, California: Morgan Kaufmann.

[4] Armstrong, Brian and Eigenmann, Rudolf Challenges in the Automatic
Parallelization of Large-scale Computational Applications 20011121;

[5] G. S. Tjaden and M. J. Flynn. Detection and parallel execution of parallel
instructions. IEEE Transactions on Computers C-19 (10), pp. 889-895,
October 1970.

[6] Limits of Instruction-Level Parallelism David W. Wall Proceedings of the
fourth international conference on Architectural support for programming
languages and operating systems, pages 176–188. ACM Press, 1991.

[7] Aho, A. V., Sethi, R. Ullman, J. D. (1986). Compilers: Principles, Tech-
niques, and Tools. Murray Hill, New Jersey: Bell Telephone Laboratories
Inc.

[8] Research & High-Performance Computing Support Portable Batch Sys-
tem at McMaster http://www.rhpcs.mcmaster.ca/pbs/abaqusp.html

[9] Faraboschi, P. and Fisher, J.A. and Young, C., Instruction scheduling for
instruction level parallel processors. Proceedings of the IEEE, vol 89,
20010000.

[10] Gu, Junjie and Li, Zhiyuan Efficient interprocedural array data-flow
analysis for automatic. Software Engineering, IEEE Transactions on
volume 26 20000330.

[11] Ricci, L. Automatic loop parallelization: an abstract interpretation
approach Parallel Computing in Electrical Engineering, 2002. PARELEC
’02. Proceedings.

[12] Manuel Hermenegildo School of Computer Science, Technical Uni-
versity of Madrid(UPM), SpainAutomatic Parallelization of Irregular
and Pointer–Based Computations: Perspectives from Logic and Con-
straint Programming Invited Paper at Europar’97, August 1997, LNCS,
Springer–Verilag

